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Overview
•The problem: Nonparametric regression in Reproducing Kernel Hilbert Space (RKHS).
•The goal: Close the gap between the known lower and upper bound on the prediction error.
•Contributions
–Our proposed algorithm achieves the optimal rate in so-called “hard regime”, resolving a
long-standing open problem.

–We achieve even faster convergence when the Bayes error is 0.
–When the Bayes error is 0, we show that the best regularization is 0, which connects to
recent interest on the generalization ability of the interpolator.

•Algorithm: A randomized variant of the kernel ridge regression.

Background
Let X and Y be the feature and label space respectively. Task: Given an i.i.d. training set
S = {xt ∈ X, yt ∈ Y}nt=1 from an unknown distribution ρ, find f̂ whose risk

R(f̂ ) :=

∫

X×Y

(
f̂ (x)− y

)2
dρ

is close to the optimal risk R? := inff R(f ). We consider functions from a Reproducing
Kernel Hilbert Space (RKHS).

[Definitions]
• fρ(x) :=

∫
Y ydρ(y|x): the regression function =⇒ achieves the optimal riskR?.

• ρX: the marginal distribution. L2
ρX
: the space of square integrable functions w.r.t. ρX.

•LK : L2
ρX
→ L2

ρX
: the integral operator defined by (LKf )(x) =

∫
XK(x,x′)f (x′)dρX(x′).

• ∃ an orthonormal basis {Φ1,Φ2, · · · } of L2
ρX

consisting of eigenfunctions of LK with cor-
responding non-negative eigenvalues {λ1, λ2, · · · }. Fact: the set {λi} is finite or λk → 0

when k →∞.

[Assumptions]
(i) Regularity: Separable RKHSHK associated to a Mercer kernelK : X× X→R.
(ii) Boundedness: supx∈XK(x,x) = R2 <∞. (set R = 1 for simplicity).

Y ∈ [−Y, Y ] with Y <∞.
(iii) Source condition: Define

LβK(L2
ρX

) :=

{
f =

∞∑

i=1

λβi aiΦi : ‖L−βK f‖2
ρ :=

∞∑

i=1

a2
i <∞

}
.

We assume that

fρ ∈ LβK(L2
ρX

) for 0 < β ≤ 1/2 (i.e., ∃g ∈ L2
ρX

: fρ = LβK(g)) .

=⇒ characterizes the “complexity” of the function, answering “how much infinite” the
function f ’s norm is. Smaller β means that f is more complex.

(iv)Eigenvalue decay: ∃b ∈ [0, 1] such that Tr[LbK] <∞.

[Facts]
• β = 1/2 means fρ ∈ HK.
• b = 0 means that the kernel induces finite dimensions.
• Sum of the eigenvalues of LK is at most R2.
Since K is a Mercer kernel, LK is compact and positive. Therefore, the fractional power operator L�

K is well
defined for any � � 0. We indicate its range space by

Figure 1: L2
⇢X , HK , and L�

K(L2
⇢X )

spaces, with 0 < �1 < 1
2

< �2.

L�
K(L2

⇢X ) :=

⇢
f =

1X

i=1

ai�i :
X

i:ai 6=0

a2
i�

�2�
i < 1

�
. (1)

By the Mercer’s theorem, we have that L
1
2

K(L2
⇢X ) = HK , that is

every function f 2 HK can be written as L
1
2

Kg for some g 2 L2
⇢X ,

with kfkK = kgkL2
⇢X

. On the other hand, by definition of the

orthonormal basis, L0
K(L2

⇢X ) = L2
⇢X . Thus, the smaller � is, the

bigger this space of the functions will be,1 see Fig. 1. This space
has a key role in our analysis. In particular, we will assume that
f `
⇢ 2 L�

K(L2
⇢X ) for � > 0, that is

9g 2 L2
⇢X : f `

⇢ = L�
K(g). (2)

3 A Gentle Start: ASGD, Optimal Step Sizes, and the Perceptron
We want to investigate the problem of training a predictor, f̄T , on the training set {xt, yt}T

t=1 in a stochastic
way, using each sample only once, to have E`(f̄T ) converge to E`(f `

⇢). For the square loss, `(x) = (1�x)2,
the Averaged Stochastic Gradient Descent (ASGD) in Algorithm 1 has been proposed as a fast stochastic
algorithm to train predictors [35]. ASGD simply goes over all the samples once, updates the predictor with
the gradients of the losses, and returns the averaged solution. For ASGD with constant step size 0 < ⌘  1

4 ,
it is immediate to show2 that

E[E`(f̄T )]  inf
h2HK

E`(h) + khk2
K (⌘T )�1 + 4⌘. (3)

This result shows the link between step size and regularization: In expectation, the `-risk of the averaged
predictor will be close to the `-risk of the best regularized function in HK . Moreover, the amount of
regularization depends on the step size used. From (3), one might be tempted to choose ⌘ = O(T� 1

2 ).
With this choice, when the number of samples goes to infinity, ASGD would converge to the performance
of the best predictor in HK at a rate of O(T� 1

2 ), only if the infimum infh2HK
E`(h) is attained by a

function in HK . Note that even with a universal kernel we only have E`(f `
⇢) = infh2HK

E`(h) but there is
no guarantee that the infimum is attained [26].

On the other hand, there is a vast literature examining the general case when (2) holds [11, 24, 34, 32, 7,
4, 33, 27, 16, 31, 29]. Under this assumption, this infimum is attained only when � � 1

2 , yet it is possible to

prove convergence for � > 0. In fact, when (2) holds it is known that minh2HK

h
E`(h) + khk2

K (⌘T )�1
i
�

E`(f `
⇢) = O((⌘T )�2�) [12, Proposition 8.5]. Hence, it was observed in [33] that setting ⌘ = O(T� 2�

2�+1 )

in (3), we obtain E[E`(f̄T )] � E`(f `
⇢) = O

⇣
T� 2�

2�+1

⌘
, that is the optimal rate [33, 27]. Hence, the setting

⌘ = O(T� 1
2 ) is optimal only when � = 1

2 , that is f `
⇢ 2 HK . In all the other cases, the convergence rate of

ASGD to the optimal `-risk is suboptimal. Unfortunately, � is typically unknown to the learner.
On the other hand, using the tools to design self-tuning algorithms, e.g. [1, 13], it may be possible to

design an ASGD-like algorithm, able to self-tune its step size in a data-dependent way. Indeed, we would

1The case that � < 1 implicitly assumes that HK is infinite dimensional. If HK has finite dimension, � is 0 or 1. See also the
discussion in [27].

2For completeness, the proof is in the Appendix.
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(a) 0 < β1 <
1
2 < β2 (b) known lower bound (exponent of 1

n) (c) known upper bound

Kernel Truncated Randomized Ridget Regression (KTR3)

Algorithm 1 KTR3: Kernel Truncated Randomized Ridge Regression
Input: A training set S = {(xi, yi)}ni=1, a regularization parameter λ ≥ 0
Randomly permute the training set S
for t = 0, 1, . . . , n− 1 do
Set ft = argminf∈HK

λ‖f‖2 + 1
n

∑t
i=1(f (xi)− yi)2

(break ties by the minimum norm)
end for
Return fS,λ := TY ◦ fk, where k is uniformly at random between 0 and n− 1

Theorem 1 (simplified) . There exists a setting of λ ≥ 0 such that:
(i) When b 6= 0,

E [R(fS,λ)]−R(fρ) ≤ O
(

min
(

(n/R(fρ))
− 2β

2β+1 + n−2β, n−
2β

2β+b

))
.

(ii) In the case b = 0 and β = 1
2,

E [R(fS,λ)]−R(fρ) ≤ O
(
n−1 Tr[L0

K] log
(
1 + n/Tr[L0

K]
))
.

(When b = 0 the space is finite dimensional, hence β can only have value 0 or 1/2 and there
is no convergence to the Bayes risk when β = 0.)

[Remarks]
•Optimal rate: Our rate n−

2β
2β+b matches the worst-case lower bound (Fischer and Steinwart,

2017) without additional assumptions for the first time in the literature.
=⇒ In the regime 2β + b < 1, prior works have a slower rate of n−2β.

•Low-noise acceleration: WhenR(fρ) = 0, we obtain a faster rate of n−
2β

min{2β+b,1}.
=⇒ The first of its kind; no known lower bounds.

• Interpolation (almost): WhenR(fρ) = 0, the optimal λ that minimizes the generalization
upper bound in Theorem 1 goes to zero when β goes to 1/2 and becomes exactly 0 when β
is exactly 1/2.

Technical ingredients

• Online-to-batch conversion (Cesa-Bianchi et al., 2004)
=⇒ Allows us to leverage strong inequalities from online learning.

• “The identity” for online Kernel ridge regression (Zhdanov and Kalnishkan, 2013).
=⇒ A rather obscure result that says: The online error of KRR, adjusted by some weights,
is exactly the minimum of the batch training error objective.

Theorem 2 (Zhdanov and Kalnishkan, 2013, Theorem 1). Take a kernel K on a domain X
and a parameter λ > 0. Then, with the notation of Algorithm 1, we have

1

n

n∑

t=1

(ft−1(xt)− yt)2

1 + dt
λn

= min
f∈HK

λ‖f‖2 +
1

n

n∑

t=1

(f (xt)− yt)2 ,

where dt := K(xt,xt) − kt−1(xt)
>(Kt−1 + λnI)−1kt−1(xt) ≥ 0, kt−1(xt) :=

[K(xt,x1), . . . , K(xt,xt−1)]
>, andKt−1 is the Gram matrix of the samples x1, . . . ,xt−1.

Lemma 1 . (Classic result; e.g., (Cesa-Bianchi et al., 2005))

E

[
n∑

t=1

dt
dt + λn

]
≤
∞∑

i=1

log

(
1 +

λi
λ

)

[E.g., Linear version]
• Define V t = λnI +

∑t
s=1 xsx

>
s . Then, dt = (λn) · ‖xt‖2

V −1t−1
.

=⇒ The test error at time t is weighted by 1
1+‖xt‖2

V −1t−1

.

• Also, E
[∑n

t=1
dt

dt+λn

]
= E[

∑n
t=1 ‖xt‖2

V −1t
] ≤∑d

i=1 log
(

1 + λi
λ

)

Related work
Notable ones:
• (Lin et al., 2018) and (Dieuleveut and Bach, 2016): suboptimal rate ofO

(
n−2β

)
for regime

2β + b < 1.
•With an additional assumption, (Pillaud-Vivien et al., 2018) achieve the optimal rate in a
subregime of 2β + b < 1.

• Low-noise acceleration: (Orabona, 2014) achieve O(n−
2β
β+1) when R(fρ) = 0, for smooth

and Lipschitz losses.
• Asymptotic result on finite dimensional case: (Hastie et al., 2019) show thatwhenR(fρ) = 0

the best ridge regression parameter λ is 0.

Experiments
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• A spline regression task.
• For each training set size n we choose the λ that minimizes the average excess risk.
• For (b), previously-known bounds predicts a slower rate of n−

1
2.

Conclusion
Our work verifies that the previously-known lower bound is indeed optimal by showing a
matching upper bound. Furthermore, we open up a new parametrization of the risk bound via
the Bayes risk R(fρ), which allows accelerated rates.
•We conjecture the standard KRR would enjoy a similar upper bound; we believe the ran-
domization of KTR3 just provided an easy pathway to the proof.

•What about the regime β > 1/2? Our method suffers from ‘saturation’ effect due to the
regularizer.

•What would be the lower bound for the case R(fρ) = 0? Note this is not unrealistic, e.g.,
in vision tasks where human can do a near-perfect classification of images.
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