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Overview

* The problem: Nonparametric regression in Reproducing Kernel Hilbert Space (RKHS).
* The goal: Close the gap between the known lower and upper bound on the prediction error.
e Contributions
— Our proposed algorithm achieves the optimal rate in so-called “hard regime”, resolving a
long-standing open problem.
— We achieve even faster convergence when the Bayes error is 0.
— When the Bayes error is 0, we show that the best regularization is 0, which connects to
recent interest on the generalization ability of the interpolator.
e Algorithm: A randomized variant of the kernel ridge regression.

Background

Let X and Y be the feature and label space respectively. Task: Given an i.i.d. training set
S ={x; € X,y € Y}, from an unknown distribution p, find f whose risk

R = [ (f@-y) do

is close to the optimal risk R* := inf; R(f). We consider functions from a Reproducing
Kernel Hilbert Space (RKHS).

[Definitions]

* folz) =
* px: the marginal distribution. C%X: the space of square integrable functions w.r.t. px.

*Lr : L — L : theintegral operator defined by (L f)(x) = [ K(x, ) f(x')dpx(x’).
} of L%X consisting of eigenfunctions of L with cor-
}. Fact: the set {\;} is finite or Ay — 0

|y ydp(y|x): the regression function = achieves the optimal risk R*.

* 3 an orthonormal basis { Py, P, - - -
responding non-negative eigenvalues { A{, \o, - - -
when k& — o0.

[Assumptions]
(i) Regularity: Separable RKHS H x associated to a Mercer kernel K : X X X—R.
(ii) Boundedness: sup,.x K (x,x) = R* < oo. (set R = 1 for simplicity).
c =Y, Y] withY < oc.
(iii) Source condition: Define

L2 ) -—{ ZA%Z N FIR = Za§<oo}.
1=1

We assume that
fo € Lf((ﬁf)x) for0 < <1/2 (e, dgel, :f,= L7 (9)) .

—> characterizes the “complexity” of the function, answering “how much infinite” the
function f’s norm is. Smaller 5 means that f is more complex.
(iv) Eigenvalue decay: 3b € [0, 1] such that Tr[LY%] < ooc.

[Facts]
B =1/2means f, € Hg.
e b = 0 means that the kernel induces finite dimensions.
e Sum of the eigenvalues of L is at most R°.
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Kernel Truncated Randomized Ridget Regression (KTR")

Algorithm 1 KTR?: Kernel Truncated Randomized Ridge Regression
Input: A training set S = {(x;,y;)}."_;, a regularization parameter A > 0
Randomly permute the training set .S
fort=0,1,....n—1do

Set f; = argminfepg, AllFI? + 3 Dt (@) — i)

(break ties by the minimum norm)
end for
Return fg \ =

TV o /1., where k is uniformly at random between 0 and n — 1

Theorem 1 (simplified) .
(i) When b # 0,

E|R(fsn)] —
(ii) In the case b = 0 and 0 =
BR(fsn)] - RU,) < O (n- Tr{L log (1-+ ) THLY))

(When b = 0 the space is finite dimensional, hence 3 can only have value 0 or 1/2 and there

There exists a setting of A > 0 such that:

R(f,) < O (min ((n/R(f,) 77 +n n"77)) .

/\

DN I—

is no convergence to the Bayes risk when 5 = 0.)

[Remarks] }
2
e Optimal rate: Our rate n 2+ matches the worst-case lower bound (Fischer and Steinwart,
2017) without additional assumptions for the first time in the literature.

— In the regime 25 + b < 1, prior works have a slower rate of n=2",
26
* Low-noise acceleration: When R ( f,) = 0, we obtain a faster rate of n= =aR71,

— The first of its kind; no known lower bounds.
* Interpolation (almost): When R(f,) = 0, the optimal A that minimizes the generalization

upper bound in Theorem 1 goes to zero when 3 goes to 1/2 and becomes exactly 0 when 3
is exactly 1/2.

Technical ingredients

* Online-to-batch conversion (Cesa-Bianchi et al., 2004)

—> Allows us to leverage strong inequalities from online learning.

Cer

* “The identity” for online Kernel ridge regression (Zhdanov and Kalnishkan, 2013).

——> A rather obscure result that says: The online error of KRR, adjusted by some weights,
is exactly the minimum of the batch training error objective.

Theorem 2 (Zhdanov and Kalnishkan, 2013, Theorem 1).
and a parameter A > 0. Then, with the notation of Algorithm 1, we have

t— t t 1 -
—Z (fi-1(2) y) = in AP+ 37 (Fl) — w)”
t=1

Take a kernel K on a domain X

fHK

where dt L= K(CBt, a:t) — kt_l(wt)T(Kt_l + )\n[)_lkt_l(wt) Z O, kt_l(a:t) L=
[K(wt7 wl)) sy K(wta wt—l)]—r,

Lemma 1. (Classic result; e.g., (Cesa-Bianchi et al., 2005))

I~ d > \;
t < Zlog <1+X>
1=1

= Zdﬁ—)m_

| t=1

and K;_q is the Gram matrix of the samples &1, ..., X;_1.

[E.g., Linear version]
eDefine V, = \nI + ' x.x/!. Then, d, = ( n) - |23
t—1

—> The test error at time ? is weighted by T tHQ

E[S e ] < 3

t 1

z:l log (1 + %)

e Also, E [Zt 17 +>\n} =
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Related work

Notable ones:
 (Lin et al., 2018) and (Dieuleveut and Bach, 2016): suboptimal rate of O (
204+ b < 1.
e With an additional assumption, (Pillaud-Vivien et al., 2018) achieve the optimal rate in a
subregime of 20 + b < 1.

* Low-noise acceleration: (Orabona, 2014) achieve O(n~

) for regime

) when R(f,) = 0, for smooth
and Lipschitz losses.

* Asymptotic result on finite dimensional case: (Hastie etal.,2019) show that when R (f,) = 0
the best ridge regression parameter A is O.
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* A spline regression task.
* For each training set size n we choose the A that minimizes the average excess risk.

e For (b), previously-known bounds predicts a slower rate of ne.

Conclusion

Our work verifies that the previously-known lower bound is indeed optimal by showing a

matching upper bound. Furthermore, we open up a new parametrization of the risk bound via
the Bayes risk 12( f,), which allows accelerated rates.
* We conjecture the standard KRR would enjoy a similar upper bound; we believe the ran-
domization of KTR? just provided an easy pathway to the proof.
« What about the regime 8 > 1/2? Our method suffers from ‘saturation’ effect due to the
regularizer.
» What would be the lower bound for the case R(f,) = 0? Note this is not unrealistic, e.g.,
in vision tasks where human can do a near-perfect classification of images.
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