Kernel Truncated Randomized Ridge Regression: Optimal Rates and Low Noise Acceleration

Kwang-Sung Jun (The University of Arizona)

Ashok Cutkosky (Google Research)

Francesco Orabona (Boston University)

Setup

- We consider the problem of nonparametric regression in Reproducing Kernel Hilbert Space (RKHS).
- We follow the standard parameterization of the problem complexity parameterization (b, β) where
 - b is the eigenvalue decay rate of the integral operator and
 - β is a complexity measure of the optimal predictor (related to its norm).

Contributions

- 1. We achieve the optimal rate in certain problem regime on (b, β) (previously called a "hard regime"), resolving a long-standing open problem.
- 2. We also show an even faster convergence is possible when the Bayes error is 0.
- 3. Furthermore, when Bayes error is 0, the best regularization is 0, which connects to recent interest on the generalization ability of the interpolator.

Key ingredients for the proof

- Online-to-batch conversion:
 Our algorithm is essentially an online learning algorithm at its heart,
 but we turn it into a batch algorithm with randomization.
- 2. "The identity" for Kernel Ridge Regression (KRR)*:
 A known, but rather obscure result that the *online cumulative*prediction error of KRR, adjusted by some weights, is exactly equal to the minimum of the *batch regularized training error* objective.

^{*}Zhdanov, Fedor, and Yuri Kalnishkan. "An identity for kernel ridge regression." In International Conference on Algorithmic Learning Theory, pp. 405-419, 2010.