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Setup

• We consider the problem of nonparametric regression in Reproducing 
Kernel Hilbert Space (RKHS).

• We follow the standard parameterization of the problem complexity 
parameterization (𝑏, 𝛽) where
• 𝑏 is the eigenvalue decay rate of the integral operator and 
• 𝛽 is a complexity measure of the optimal predictor (related to its norm).



Contributions

1. We achieve the optimal rate in certain problem regime on (𝑏, 𝛽)
(previously called a “hard regime”), resolving a long-standing open 
problem.

2. We also show an even faster convergence is possible when the 
Bayes error is 0.

3. Furthermore, when Bayes error is 0, the best regularization is 0, 
which connects to recent interest on the generalization ability of 
the interpolator.



Key ingredients for the proof

1. Online-to-batch conversion:
Our algorithm is essentially an online learning algorithm at its heart, 
but we turn it into a batch algorithm with randomization.

2. “The identity” for Kernel Ridge Regression (KRR)*:
A known, but rather obscure result that the online cumulative 
prediction error of KRR, adjusted by some weights, is exactly equal 
to the minimum of the batch regularized training error objective.

*Zhdanov, Fedor, and Yuri Kalnishkan. "An identity for kernel ridge regression." In International Conference on Algorithmic Learning Theory, pp. 405-419, 2010.


