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[The problem] Perform Stochastic subGradient

Descent (SGD) while guaranteeing ε-locally

differentially private (ε-LDP).

[The need] Convergence rates of existing solutions

(e.g., (Song et al., 2013)) largely depend on the

learning rate that must be tuned via repeated runs.

=⇒ privacy sacrificed!

[Goal] Converge as fast as the best learning rate in

hindsight, in one pass & without tuning.

[Contribution] We propose BANCO (Betting Algorithm for Noisy COins), the first ε-LDP

SGD algorithm that essentially matches the convergence rate of the tuned SGD without any

learning rate parameter, reducing privacy loss and saving privacy budget.

[What do you mean by the best learning rate?]

w∗ := min
w
R(w) where R(w) is the expected loss of w .

The standard SGD with a constant learning rate η with ε-LDP guarantee:

E[R(wT )]−R(w∗) = O

(
‖w∗‖2

ηT
+
d2

ε2
η

)
.

The optimal rate would be

O

(
d

ε
‖w∗‖/

√
T

)
with η = ‖w∗‖ε/d√

T
, . . . ??!! but who knows ‖w∗‖?

• In reality, the best bound is O(dε‖w
∗‖2/
√
T ) with η = ε/d√

T
.

• In practice, must tune the learning rate with repeated runs..

In contrast, BANCO achieves the rate d
ε‖w

∗‖/
√
T up to

logarithmic factors without knowing ‖w∗‖!

[Why is parameter-free nontrivial for ε-LDP?] Existing techniques require the observed

gradients to be bounded, but for LDP gradients are corrupted with unbounded noise.

Problem definition

We consider SGD for minimizing the test loss (rather than train loss) with access to sanitized
subgradients (i.e., corrupted by noise).

•The loss `(w,x): convex in w, and x is the sensitive data about an individual.

•The test loss R(w) := Ex∼ρX[`(w,x)] where ρX is the distribution of the sensitive data.

• Sanitized subgradients: a noisy version G(w) ∈ ∂`(w,x) + ξ where the noise ξ guarantees

the ε-LDP.

•Task: Perform SGD with sanitized subgradient requests; converge as close as possible to w∗

after T iterations.

[Assumptions]
wt: SGD iterate at time t, ĝt: sanitized (negative) subgradient of wt, ξt := ĝt−E[ĝt].

• (A1) ‖E[ĝt]‖2 ≤ G,∀t.
• (A2) Bounded variance: E

[
‖ξt‖22 | ξ1:t−1

]
≤ σ2,∀t.

• (A3) Tail condition: ξt|ξ1:t−1 is (σ21D, b)-sub-exponential

max
a:‖a‖2≤1

Et [exp(β〈ξt,a〉)] ≤ exp

(
β2σ21D

2

)
, ∀|β| ≤ 1

b

Definition 1 (Local Differential Privacy) Let D = (X1, . . . , Xn) be a sensitive dataset

where each Xi ∼ ρX corresponds to data about individual i. A randomized sanitization

mechanism M which outputs a disguised version (U1, . . . Un) of D is said to provide ε-local

differential privacy to individual i, if

sup
S

sup
x,x′∈D

P[Ui ∈ S|Xi = x]

P[Ui ∈ S|Xi = x′]
≤ exp(ε),

where the probability is w.r.t. the randomization in the sanitization mechanism.

[Example] The Laplace sanitization mechanism samples the noise ξ by

ρξ(z) ∝ exp(−ε
2
‖z‖2)

•Guarantees ε-LDP

• Satisfies (A2): E
[
‖ξt‖22

]
≤ 4(d2+d)

ε2 ; (A3): σ21D = 18d2/ε2 and b = ε/4.

Related Work

data provider learning agent userssensitive 
data (untrusted)(trusted) (??)

•DP vs LDP: In DP, the data provider trusts the learning agent. LDP does not, so the data

itself must be sanitized.

•Minimize empirical risk (ERM) vs true risk (generalization).

• Song et al. (2013; 2015): LDP, ERM.

•Wu et al. (2017): DP, ERM.

•Duchi et al. (2014); Bassily et al. (2014): LDP, generalization.

Those that tune the learning rate assume the bounded domain. =⇒ unrealistic and suboptimal.

=⇒ Ours: LDP, generalization, convergence rate of the tuned SGD without tuning!

Parameter-free stochastic optimization with noise

Algorithm 1 Betting Algorithm for Noisy COins (BANCO) for Locally Differentially Private SGD
1: Set w1 = q1 = 0 ∈ Rd

2: for t = 1 to T do
3: Receive a noisy negative subgradient ĝt such that E[ĝt] ∈ −∂`(wt,x) where x ∼ ρX

4: Update magnitude: mt+1 =
1
2a

∫ a
−a β exp

(
β
∑t

s=1〈ĝs, qs〉 − β2t
(
σ2

2 +G2
))

dβ

where a = min
(
k1
G,

1
b

)
, and k1 = 0.6838

5: Update direction: qt+1
2
= qt −

ĝt√∑t
s=1 ‖ĝs‖22

6: Project direction onto L2 ball: qt+1 = qt+1
2
·min

(
1,
∥∥∥qt+1

2

∥∥∥−1
2

)
7: Update the weight vector: wt+1 = mt+1qt+1 ∈ Rd

8: end for
9: Return 1

T

∑T
t=1wt

A closed form solution of mt+1: with shorthands x =
∑t

s=1〈ĝs, qs〉 and y = t(σ2/2 +G2),

mt+1 =
e−a(ay+x)

(√
πx exp

(
(2ay+x)2

4y

)(
erf(2ay+x2

√
y ) + erf(2ay−x2

√
y )
)
+ 2
√
y(1− e2ax)

)
8ay3/2

.

Theorem 1 Let G = 1. Let the noise ξt follow the Laplace mechanism. Then, for any

w? ∈ Rd, after one pass over T samples Algorithm 1 guarantees

E

R
 1

T

T∑
t=1

wt

−R(w?) ≤ O

(
d‖w?‖2
ε
√
T

√
ln
(
1 + d2‖w?‖2T

ε2

)
+

1

T

)
.

•Unimprovable up to logarithmic factors (Jun and Orabona, 2019).

•A more general version in (Jun and Orabona, 2019): extension to Banach space, connection

to concentration inequalities, etc.

•The Gaussian noise can also be used, resulting a better dependency in the dimension of the

space, but in the weaker (ε, δ)-LDP.

Proof Sketch

online learning +

direction learner

magnitude learner

noise Laplace mechanism

(thm 2)

online-to-batch
conversion

parameter-free SGD
with !-LDP

Key: The flexibility of “regret” in online learning allows combining two learners.

Assume:

•Direction: RD
T (u) := E[

∑T
t=1〈ĝt,u− qt〉], ∀u : ‖u‖2 ≤ 1.

•Magnitude: RM
T (v) := E[

∑T
t=1 st · (v −mt)] where st = 〈ĝt, qt〉, ∀v ∈ R.

Theorem 2 Let gt := E[ĝt]. The iterates mtqt guarantee, ∀u ∈ Rd,

ERegretT (u) := E
T∑
t=1

〈gt,u−mtqt〉 ≤ RM
T (‖u‖) + ‖u‖RD

T (
u
‖u‖) .

•Direction learner: projected online gradient descent with the scale-free learning rates.

E
[
RD
T

(
u

‖u‖2

)]
= O

E


√√√√ T∑

t=1

‖ĝt‖22


 (a)

= O


√√√√ T∑

t=1

(E ‖gt‖22 + σ2)

 ,

where (a) uses Jensen’s inequality and the fact that E[‖ĝt‖22] = E[‖gt‖22] + σ2.

•Magnitude learner: the coin betting algorithm of Jun and Orabona (2019) that enjoys:

RD
T (u) = O

|u|max

{
(1 + b) ln (|u|(1 + b)) ,

√
(1 + σ21D)T ln (|u|(1 + σ21D)T + 1)

}
+ 1

 .

Future work

•High probability convergence guarantees.

•Through empirical evaluation of BANCO.

•Data-dependent regret bound that depends on‖ĝt‖2 rather than (G2 + σ2)T .

•Be agnostic to the noise parameters (σ2, b).

The last two are resolved by a followup paper by van der Hoeven (2019) for symmetric noise.
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